

ENPM808A FINAL PROJECT REPORT

- By Rishabh Singh (M.Eng Robotics)

- 117511208

General Project Pipeline followed

 Fig 1. Pipeline

My codebase includes following classes implementation:

1) Data_import.py – Checks for csv in the input folder. Checks for any inconsistency.

Combines the data and make a new csv to avoid loading multiple csv’s again and again.

Provides the data to the MPCLearning class present in pipeline.py module.

2) Pipeline.py – This module takes care of the major part of the pipeline

3) SVM.py for support vector machine

4) NeuralNet.py for MLP

5) Regression.py for linear ridge regression

6) xg_boost.py for XG boost

7) utils.py for functions like quaternion to euler

The steps shown above in the flowchart are described below:

Data Gathering

In this project, we were already given the data, and hence has been assumed that the data is IID

but with two minimum scenarios:

1) A corridor scenario with moving obstacles Tested in a box scenario

2) An open box/hall environment with moving obstacles

Since the sampling rate, sampling time along with sampling space may differ hence I decided

to train for both scenarios separately.

Data Selection

A large number of CSV files are provided. The simplest thing to do was to take a random

sub-sample with uniform distribution and check if it was significant or not. If it's

reasonably significant, we'll keep it. If it's not, we'll take another sample and repeat the

procedure until we get a good significance level. Initially, I considered just 1 CSV file with

more than enough data to split in the training and validation just to set my pipeline. Once set,

I added enough files to gather enough data points to follow the VC dimension rule. Well, it is

always good to have a large amount of data but I kept in mind two things:

1) Outliers

2) Computational complexity

The outliers were removed through the process of data cleaning. I created a data import module

that takes all the CSV files in the folder, combines them, and write a new CSV. Writing a CSV

is time-consuming, but it has to happen only in the first run, and is very convenient to use the

generated CSV again and again for tuning parameters. The same thing is done for testing CSV

files.

Fig 2. Data import steps

Data Cleaning and Pre-processing

This is performed to check following flaws with the input data:

1) Can be converted to NumPy float64 format for data type consistency?

2) Are the number of rows consistent?

3) Presence of any null value

4) Repeated/Stagnant or Unchanging data

Fig 3. Data cleaning

Source: https://www.geeksforgeeks.org/

Part of this process is handled by the data_import.py and pipeline.py module provided in the

code base. The rest is taken care by the pre-processing tool of sklearn library. As mentioned on

their page, the Standardization of datasets is a common requirement for many machine

learning estimators implemented in scikit-learn; they might behave badly if the individual

features do not more or less look like standard normally distributed data: Gaussian with zero

mean and unit variance, basically white.

new csv files
provided

Create
combine_csv

Run the
workflow

If
combine_csv

present

Run the
workflow

https://www.geeksforgeeks.org/

Feature Selection

There are three main goals to feature selection.

1) Improve the accuracy with which the model can predict new data.

2) Reduce computational cost.

3) Produce a more interpretable model.

Through the given data I am trying to capture as much information as necessary for the

controller The given data consists of Lidar data, robot position, local goal position, and final

goal position. To define features and after knowing the scenario, I tried to think of both as a

Controls engineer and as a Machine Learning engineer.

The 11 features defined are as follows:

• Distance from the local goal position is one of the costs in MPC.

• Distance from the final goal position is one of the costs in MPC.

• Angular error in shortest trajectory to local goal and vehicle heading angle is another

cost in MPC

Fig 4. Angular error between bot’s yaw and shortest trajectory

• Angular error in shortest trajectory to final goal and vehicle heading angle

• Lidar output in LOS (Line of Sight) of the robot is basically at the 540th index of lidar

• Lidar output towards the shortest trajectory for the local goal-

o This was computed using the slope of the shortest trajectory and angular

difference calculated above.

• Lidar output towards the shortest trajectory for the final goal

• Maximum distance the robot can travel towards the shortest trajectory for the local goal

Fig. 5 Obstacle detection cost

Fig 6. Obstacle detection with tolerance in width of the bot (assuming 30 cm of width)

• Maximum distance the robot can travel towards the shortest trajectory for the final

goal

• Angular difference between bot’s yaw and final pose

• Angular difference between bot’s yaw and local pose

Note: The limitation in output velocity and omega is also be considered

- Predicted velocity < Max bot velocity (found from given data)

- Predicted omega < Max bot omega (found from given data)

There can be more such features, but these are the ones considered because of time

limitations.

Metrics Considered

These are defined inside the model classes for plotting and calculations. Since we care more

about how accurate the predictions are w.r.t the actual values, we need the mean squared

error and the variations spread to be low. Hence, the major metrics considered were:

• R2 score: It represents the proportion of variance (of y) that has been explained by

the independent variables in the model. It provides an indication of goodness of fit

and therefore a measure of how well-unseen samples are likely to be predicted by the

model, through the proportion of explained variance.

The best possible score is 1.0 and it can be negative (because the model can be

arbitrarily worse). A constant model that always predicts the expected (average) value

of y, disregarding the input features, would get an R2 score of 0.0.

If ŷi is the predicted value of the ith sample and yi is the corresponding true value for

total n samples, the estimated R2 is defined as:

SOURCE: https://scikit-learn.org

• Mean Squared Error: This needs to be as low as possible and helps in tuning

hyperparameters.

If ŷi is the predicted value of the ith sample and yi is the corresponding true value for

total n samples, the estimated MSE is defined as:

Model selection and test with box data:

The models considered for the projects are:

1) Linear Regression

2) SVM

3) XG Boost by Nvidia

4) Multilayer Perceptron

Common Pipeline considered for every model:

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

1) Get the features and data

2) Perform pre-processing

3) Split the input data into training and validation with an 80:20 ratio

4) Choose the model and hyperparameter (in this case one because of time complexity)

5) Train with the input and change the parameter to find the optimal weights

6) Merge validation data with training and find the new weights using the parameter

value selected above

7) Predict the outputs from training and testing

8) Check in-sample, validation, and out-sample R2 scores and MSE.

Model 1: Linear Ridge Regression

This model solves a regression problem where the loss function is the linear least squares

function and regularization is given by the l2-norm. Also known as Ridge Regression or

Tikhonov regularization.

The reasons behind using this model are:

1) Medium Complexity as shown below

Fig. 7 Complexity Analysis

2) Regularization parameter considered allowing us to do hyperparameter tuning as

desired.

Fig. Regularization in regression

3) It protects the model from overfitting.

4) It does not need unbiased estimators

5) A Large amount of data is available and ridge regression helps in doing non-linear

transformations and calculations with less complexity

Regularization and hyperparameter tuning:

To reduce the variance in the prediction and hence the out-sample error. The parameter chosen

was lambda and was tuned for various values to optimize the output as will be shown in further

sections.

Velocity Prediction (Input Data Size~50k points, Testing Data Size~15k points):

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 8

In-sample R2 score = 0.612

Validation R2 score = 0.607

Out-sample R2 score = 0.602

• MSE variation with hyperparameter

Fig. 9

In-sample MSE = 0.046920975145010944

Validation MSE = 0.04698079021276492

Out-sample MSE = 0.051465936370142046

• Learning and Validation Curve Velocity:

Fig. 10

Omega Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 11

In-sample R2 Score = 0.008

Validation R2 Score = 0.00625

Out-sample R2 Score = 0.0051

• MSE variation with hyperparameter

Fig. 12

In-sample MSE = 0.0638

Validation MSE = 0.0647

Out-sample MSE = 0.0628

• Learning and Validation Curve Omega:

Fig. 13

Note: I merged more data into the training set and the performance output was improved

somewhat

Velocity learning curve (Input Data Size~150k points):

Fig. 14

Omega Learning Curve (Input Data Size~150k points):

Fig. 15

Model 2: SVM (SVR)

There is no specific reason I used this model. I just wanted to explore SVM as it provides a

margin. This is not a good model for a large dataset but I tried to explore its capabilities with a

reduced number of points. But it performed well for velocity predictions.

“The implementation is based on libsvm. The fit time scales at least quadratically with the number

of samples and may be impractical beyond tens of thousands of samples. For large datasets

consider using LinearSVC or SGDClassifier instead, possibly after a Nystroem transformer.

Source: sklearn”

The major reasons I explored this are:

1) SVM works relatively well when there is a clear margin of separation between classes.

2) SVM is more effective in high high-dimensional spaces

3) SVM is effective in cases where the number of dimensions is greater than the number

of samples.

4) SVM is relatively memory efficient

Regularization and hyperparameter tuning:

The parameter chosen was C/alpha. The strength of the regularization is inversely proportional

to C. Must be strictly positive. The penalty is a squared l2 penalty. and was tuned for various

values to optimize the output as will be shown in further sections

I also tried to deploy different kernels and the results are as follows:

• RBF Kernel:

Velocity Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem

Fig. 16

In-sample R2 score = 0.58

Validation R2 score = 0.52

Out-sample R2 score = 0.48

• MSE variation with hyperparameter:

Fig. 17

In-sample MSE = 0.0443

Validation MSE = 0.045

Out-sample MSE = 0.048

• Learning and Validation Curve for Velocity:

Fig. 18

Omega Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 19

In-sample R2 score = 0.16

Validation R2 score = 0.156

Out-sample R2 score = 0.14

• MSE variation with hyperparameter:

Fig. 20

In-sample MSE = 0.05958532990772832

Validation MSE = 0.062082018320186366

Out-sample MSE = 0.06019050373651059

• Learning and Validation Curve for Omega:

Fig. 21

• Linear Kernel: was not able to solve

• Poly Kernel: degree = 3

Velocity Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 22

In-sample R2 score = 0.23

Validation R2 score = 0.22

Out-sample R2 score = 0.20

• MSE variation with hyperparameter

Fig. 23

• Learning and Validation Curve for Velocity:

Fig. 24

Omega Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 25

In-sample R2 score = 0.54

Validation R2 score = 0.64

Out-sample R2 score = 0.13

• Learning and Validation Curve for Omega:

Fig. 26

• Sigmoid Kernel:

The output from these kernels was negative R2 scores which meant that the data is fitting

very badly with the predicted weights.

Model 3: XGBOOST (Source: NVIDIA.com):

The reason for using XG Boost is in its introduction itself. It really fast and optimized!!!!!

XGBoost is an open-source software library that implements optimized distributed gradient

boosting machine learning algorithms under the Gradient Boosting framework.

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-

boosted decision tree (GBDT) machine learning library. It provides parallel tree boosting and

is the leading machine-learning library for regression, classification, and ranking problems. A

Gradient Boosting Decision Trees (GBDT) is a decision tree ensemble learning

algorithm similar to random forest, for classification and regression. Ensemble learning

algorithms combine multiple machine learning algorithms to obtain a better model.

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://xgboost.ai/
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Ensemble_learning

Fig. 27

Random forest uses a technique called bagging to build full decision trees in parallel from

random bootstrap samples of the data set. The final prediction is an average of all of the

decision tree predictions.

The term “gradient boosting” comes from the idea of “boosting” or improving a single weak

model by combining it with a number of other weak models in order to generate a collectively

strong model. Gradient boosting is an extension of boosting where the process of additively

generating weak models is formalized as a gradient descent algorithm over an objective

function. Gradient boosting sets targeted outcomes for the next model in an effort to minimize

errors. Targeted outcomes for each case are based on the gradient of the error (hence the name

gradient boosting) with respect to the prediction.

Regularization and hyperparameter tuning:

The parameter chosen was max_depth which is the Maximum depth in the tree search during

the optimization of weights. Increasing this value might make the model more complex and

more likely to overfit. This time I chose a different parameter to see how the model behaves.

It was tuned for various values to optimize the output, as shown in further sections.

After tuning for max_depth, I took the best output (hopefully avoiding overfit) and then tuned

for alpha.

Parameters tuned:

1) Regularised alpha – l2 norm regularization

2) Max depth - Maximum depth of a tree. Increasing this value will make the model more

complex and more likely to overfit. 0 indicates no limit on depth. Beware that XGBoost

aggressively consumes memory when training a deep tree

3) Tree method - Faster histogram optimized approximate greedy algorithm. GPU

implementation of hist algorithm (gpu_hist)

Velocity Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

o Max_depth

https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/

Fig. 28

In-sample R2 score = 0.962827 (one likely not overfitting)

Validation R2 score = 0.92244

Out-sample R2 score = 0.88950

o Lambda with max_depth = 9

Fig. 29

Best performance is with lambda = 9

In-sample R2 score = 0.9840

Validation R2 score = 0.9551

Out-sample R2 score = 0.8784

• MSE variation with hyperparameter

o Max_depth

Fig. 30

In-sample MSE = 0.00199

Validation MSE = 0.0063

Out-sample MSE = 0.01331

o Lambda with max_depth = 9

Fig. 31

In-sample MSE = 0.0018

Validation MSE = 0.0053

Out-sample MSE = 0.0146

Note: In sample and validation error decreased but out-sample increased by a bit at lambda = 9

• Learning and validation curve for velocity:

Fig. 32

Omega Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

o Max_depth

Fig. 33

In-sample R2 score = 0.8807

Validation R2 score = 0.69446

Out-sample R2 score = 0.3016

o Lambda with max_depth = 9

Fig. 34

The score came out best with lambda = 2

In-sample R2 score = 0.9237

Validation R2 score = 0.7605

Out-sample R2 score = 0.31185

• MSE variation with hyperparameter

o Max_depth

Fig. 35

In-sample MSE = 0.007678

Validation MSE = 0.019899

Out-sample MSE = 0.04383

o Alpha tuning with max_depth = 8

Fig. 36

In-sample MSE = 0.0049

Validation MSE = 0.01559

Out-sample MSE = 0.04319

Note: All the errors decreased at lambda = 2

• Learning and validation curve for Omega:

Fig. 37

After increasing data points:

In-sample R2 score = 0.8807

Validation R2 score = 0.69446

Out-sample R2 score = 0.3016

Note: The linear model deprecated in favor of squared error due to large noise in data set

Model 4: NEURAL NETWORK

Multi-layer Perceptron (MLP) (Source: scikit-learn.org) is a supervised learning algorithm

that learns a function by training on a dataset, where m is the number of dimensions for input

and o is the number of dimensions for output. It is different from logistic regression, in that

between the input and the output layer, there can be one or more non-linear layers, called hidden

layers. The figure below shows a hidden layer.

Fig. 38: Multilayer perceptron model

The reason I chose this?

1) Availability of large data set

2) It can be used to solve complex nonlinear problems.

3) Makes quick predictions after training.

4) The same accuracy ratio can be achieved even with smaller samples.

Also, I wanted to explore a Neural Network model. I used (10,2) as the size of hidden layer.

Velocity Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 39

In-sample R2 score = 0.610

Validation R2 score = 0.615

Out-sample R2 score = 0.591

• MSE variation with hyperparameter

Fig. 40

In-sample MSE = 0.04691647128188403

Validation R2 score = 0.04699860370372856

Out-sample R2 score = 0.019885021045387995

• Learning and Validation Curve for velocity:

Fig. 41

Omega Prediction:

Parameter Tuning for R2 score and MSE:

• R2 Score variation with hyperparameter

Fig. 42

In-sample R2 score = 0.038

Validation R2 score = 0.036

Out-sample R2 score = 0.03

• MSE variation with hyperparameter

Fig. 43

In-sample MSE = 0.06203

Validation MSE = 0.06289

Out-sample MSE = 0.0695

• Learning and Validation Curve Omega

Fig. 44

Delivered Model:

With all the analysis shown above, the model I would like to deliver is XG Boost the reason

is its fast speed and accuracy. Though it seems like an overfit but to make sure I will again

verify the learning pipeline with the corridor data in hand.

Dataset 2

Model test with corridor data:

Model 1: Linear Ridge Regression:

Velocity MSE:

Fig. 45

In-sample MSE = 0.058763

Validation MSE = 0.05964

Out-sample MSE = 0.06604

Omega MSE:

Fig. 46

In-sample MSE = 0.04724216267807056

Validation MSE = 0.05964313150902283

Out-sample MSE = 0.0564443296827880

Model 3: XG Boost

Velocity Prediction MSE:

Fig. 47

In-sample MSE = 0. 00218

Validation MSE = 0.00319

Out-sample MSE = 0.0364

Omega:

Fig. 48

In-sample MSE = 0. 0.005

Validation MSE = 0.01

Out-sample MSE = 0.035

Model 4: MLP

Velocity MSE:

Fig. 49

In-sample MSE = 0.036

Validation MSE = 0.038

Out-sample MSE = 0.042

Omega:

Fig. 50

In-sample MSE = 0.0472

Validation MSE = 0.0480

Out-sample MSE = 0.0521

HENCE, THE PERFORMANCE IS BEST WITH XGBOOST!!

