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General Project Pipeline followed 

  

                                                   Fig 1. Pipeline 



 

My codebase includes following classes implementation: 

1) Data_import.py – Checks for csv in the input folder. Checks for any inconsistency.  

Combines the data and make a new csv to avoid loading multiple csv’s again and again. 

Provides the data to the MPCLearning class present in pipeline.py module. 

2) Pipeline.py – This module takes care of the major part of the pipeline  

3) SVM.py for support vector machine 

4) NeuralNet.py for MLP 

5) Regression.py for linear ridge regression 

6) xg_boost.py for XG boost 

7) utils.py for functions like quaternion to euler 

The steps shown above in the flowchart are described below: 

Data Gathering 

In this project, we were already given the data, and hence has been assumed that the data is IID 

but with two minimum scenarios: 

1) A corridor scenario with moving obstacles Tested in a box scenario 

2) An open box/hall environment with moving obstacles 

Since the sampling rate, sampling time along with sampling space may differ hence I decided 

to train for both scenarios separately. 

Data Selection 

A large number of CSV files are provided. The simplest thing to do was to take a random 

sub-sample with uniform distribution and check if it was significant or not. If it's 

reasonably significant, we'll keep it. If it's not, we'll take another sample and repeat the 

procedure until we get a good significance level. Initially, I considered just 1 CSV file with 

more than enough data to split in the training and validation just to set my pipeline. Once set, 

I added enough files to gather enough data points to follow the VC dimension rule. Well, it is 

always good to have a large amount of data but I kept in mind two things: 

1) Outliers 

2) Computational complexity 

The outliers were removed through the process of data cleaning. I created a data import module 

that takes all the CSV files in the folder, combines them, and write a new CSV. Writing a CSV 

is time-consuming, but it has to happen only in the first run, and is very convenient to use the 

generated CSV again and again for tuning parameters. The same thing is done for testing CSV 

files. 



 

                             

Fig 2. Data import steps 

Data Cleaning and Pre-processing 

This is performed to check following flaws with the input data: 

1) Can be converted to NumPy float64 format for data type consistency? 

2) Are the number of rows consistent? 

3) Presence of any null value 

4) Repeated/Stagnant or Unchanging data 

 

Fig 3. Data cleaning 

Source: https://www.geeksforgeeks.org/ 

Part of this process is handled by the data_import.py and pipeline.py module provided in the 

code base. The rest is taken care by the pre-processing tool of sklearn library. As mentioned on 

their page, the Standardization of datasets is a common requirement for many machine 

learning estimators implemented in scikit-learn; they might behave badly if the individual 

features do not more or less look like standard normally distributed data: Gaussian with zero 

mean and unit variance, basically white. 
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Feature Selection 

There are three main goals to feature selection.  

1) Improve the accuracy with which the model can predict new data.  

2) Reduce computational cost.  

3) Produce a more interpretable model. 

Through the given data I am trying to capture as much information as necessary for the 

controller The given data consists of Lidar data, robot position, local goal position, and final 

goal position. To define features and after knowing the scenario, I tried to think of both as a 

Controls engineer and as a Machine Learning engineer.  

The 11 features defined are as follows: 

• Distance from the local goal position is one of the costs in MPC. 

• Distance from the final goal position is one of the costs in MPC. 

• Angular error in shortest trajectory to local goal and vehicle heading angle is another 

cost in MPC 

 
 

Fig 4. Angular error between bot’s yaw and shortest trajectory 

 

• Angular error in shortest trajectory to final goal and vehicle heading angle 

• Lidar output in LOS (Line of Sight) of the robot is basically at the 540th index of lidar 

• Lidar output towards the shortest trajectory for the local goal- 

o This was computed using the slope of the shortest trajectory and angular 

difference calculated above. 

• Lidar output towards the shortest trajectory for the final goal 

• Maximum distance the robot can travel towards the shortest trajectory for the local goal 

 



 

 
Fig. 5 Obstacle detection cost 

 

 
Fig 6. Obstacle detection with tolerance in width of the bot (assuming 30 cm of width) 

 

• Maximum distance the robot can travel towards the shortest trajectory for the final 

goal 

• Angular difference between bot’s yaw and final pose 

• Angular difference between bot’s yaw and local pose 

Note: The limitation in output velocity and omega is also be considered 

- Predicted velocity < Max bot velocity (found from given data) 

- Predicted omega < Max bot omega (found from given data) 

There can be more such features, but these are the ones considered because of time 

limitations. 

 

 

 



 

Metrics Considered 

These are defined inside the model classes for plotting and calculations. Since we care more 

about how accurate the predictions are w.r.t the actual values, we need the mean squared 

error and the variations spread to be low. Hence, the major metrics considered were: 

• R2 score: It represents the proportion of variance (of y) that has been explained by 

the independent variables in the model. It provides an indication of goodness of fit 

and therefore a measure of how well-unseen samples are likely to be predicted by the 

model, through the proportion of explained variance. 

The best possible score is 1.0 and it can be negative (because the model can be 

arbitrarily worse). A constant model that always predicts the expected (average) value 

of y, disregarding the input features, would get an R2 score of 0.0. 

If  ŷi is the predicted value of the ith sample and yi is the corresponding true value for 

total n samples, the estimated R2 is defined as: 

 

 

SOURCE: https://scikit-learn.org 

• Mean Squared Error: This needs to be as low as possible and helps in tuning 

hyperparameters.  

If  ŷi is the predicted value of the ith sample and yi is the corresponding true value for 

total n samples, the estimated MSE is defined as: 

 

 
 

 

 

Model selection and test with box data: 

The models considered for the projects are: 

1) Linear Regression 

2) SVM 

3) XG Boost by Nvidia 

4) Multilayer Perceptron 

Common Pipeline considered for every model: 

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics


 

1) Get the features and data 

2) Perform pre-processing 

3) Split the input data into training and validation with an 80:20 ratio 

4) Choose the model and hyperparameter (in this case one because of time complexity) 

5) Train with the input and change the parameter to find the optimal weights 

6) Merge validation data with training and find the new weights using the parameter 

value selected above 

7) Predict the outputs from training and testing 

8) Check in-sample, validation, and out-sample R2 scores and MSE. 

 

Model 1: Linear Ridge Regression 

This model solves a regression problem where the loss function is the linear least squares 

function and regularization is given by the l2-norm. Also known as Ridge Regression or 

Tikhonov regularization.  

The reasons behind using this model are:  

1) Medium Complexity as shown below 

 

 
Fig. 7 Complexity Analysis 

 

2) Regularization parameter considered allowing us to do hyperparameter tuning as 

desired.  

 
Fig. Regularization in regression 

3) It protects the model from overfitting. 

4) It does not need unbiased estimators 

5) A Large amount of data is available and ridge regression helps in doing non-linear 

transformations and calculations with less complexity 

Regularization and hyperparameter tuning: 



 

To reduce the variance in the prediction and hence the out-sample error. The parameter chosen 

was lambda and was tuned for various values to optimize the output as will be shown in further 

sections. 

Velocity Prediction (Input Data Size~50k points, Testing Data Size~15k points): 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

 

Fig. 8 

 

In-sample R2 score = 0.612 

Validation R2 score = 0.607 

Out-sample R2 score = 0.602 

 

• MSE variation with hyperparameter 

 

Fig. 9 



 

 

In-sample MSE = 0.046920975145010944 

Validation MSE = 0.04698079021276492 

Out-sample MSE = 0.051465936370142046 

 

• Learning and Validation  Curve Velocity: 

 

Fig. 10 

 

Omega Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

Fig. 11 

In-sample R2 Score = 0.008 



 

Validation R2 Score = 0.00625 

Out-sample R2 Score = 0.0051 

 

• MSE variation with hyperparameter 

 

Fig. 12 

In-sample MSE = 0.0638 

Validation MSE = 0.0647 

Out-sample MSE = 0.0628 

 

• Learning and Validation  Curve Omega: 

 

 
Fig. 13 

 

Note: I merged more data into the training set and the performance output was improved 

somewhat 



 

Velocity learning curve (Input Data Size~150k points): 

 

Fig. 14 

 

Omega Learning Curve (Input Data Size~150k points): 

 

Fig. 15 



 

 

Model 2: SVM (SVR) 

There is no specific reason I used this model. I just wanted to explore SVM as it provides a 

margin. This is not a good model for a large dataset but I tried to explore its capabilities with a 

reduced number of points. But it performed well for velocity predictions. 

“The implementation is based on libsvm. The fit time scales at least quadratically with the number 

of samples and may be impractical beyond tens of thousands of samples. For large datasets 

consider using LinearSVC or SGDClassifier instead, possibly after a Nystroem transformer. 

Source: sklearn” 

The major reasons I explored this are: 

1) SVM works relatively well when there is a clear margin of separation between classes. 

2) SVM is more effective in high high-dimensional spaces 

3) SVM is effective in cases where the number of dimensions is greater than the number 

of samples. 

4) SVM is relatively memory efficient 

 

 

Regularization and hyperparameter tuning: 

The parameter chosen was C/alpha. The strength of the regularization is inversely proportional 

to C. Must be strictly positive. The penalty is a squared l2 penalty. and was tuned for various 

values to optimize the output as will be shown in further sections 

I also tried to deploy different kernels and the results are as follows: 

• RBF Kernel: 

 

Velocity Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem


 

 

Fig. 16 

In-sample R2 score = 0.58 

Validation R2 score = 0.52 

Out-sample R2 score = 0.48 

 

• MSE variation with hyperparameter: 

 

Fig. 17 

 

In-sample MSE = 0.0443 

Validation MSE = 0.045 

Out-sample MSE = 0.048 

 

• Learning and Validation Curve for Velocity: 



 

 

Fig. 18 

Omega Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

Fig. 19 

In-sample R2 score = 0.16 

Validation R2 score = 0.156 

Out-sample R2 score = 0.14 

 

• MSE variation with hyperparameter: 



 

 

Fig. 20 

In-sample MSE = 0.05958532990772832 

Validation MSE = 0.062082018320186366 

Out-sample MSE = 0.06019050373651059 

 

• Learning and Validation Curve for Omega: 

 

 

Fig. 21 

• Linear Kernel: was not able to solve 

 



 

• Poly Kernel: degree = 3 
 

Velocity Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

Fig. 22 

In-sample R2 score = 0.23 

Validation R2 score = 0.22 

Out-sample R2 score = 0.20 

 

• MSE variation with hyperparameter 

 

 

 

Fig. 23 



 

 

• Learning  and Validation Curve for Velocity: 

 

 

Fig. 24 

Omega Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

 

 

Fig. 25 

In-sample R2 score = 0.54 

Validation R2 score = 0.64 

Out-sample R2 score = 0.13 

 



 

 

• Learning and Validation Curve for Omega: 

 

 

Fig. 26 

 

 

• Sigmoid Kernel: 

The output from these kernels was negative R2 scores which meant that the data is fitting 

very badly with the predicted weights.   

 

Model 3: XGBOOST (Source: NVIDIA.com): 

 
The reason for using XG Boost is in its introduction itself. It really fast and optimized!!!!! 

XGBoost is an open-source software library that implements optimized distributed gradient 

boosting machine learning algorithms under the Gradient Boosting framework. 

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-

boosted decision tree (GBDT) machine learning library. It provides parallel tree boosting and 

is the leading machine-learning library for regression, classification, and ranking problems.  A 

Gradient Boosting Decision Trees (GBDT) is a decision tree ensemble learning 

algorithm similar to random forest, for classification and regression. Ensemble learning 

algorithms combine multiple machine learning algorithms to obtain a better model. 

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://xgboost.ai/
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Ensemble_learning


 

 

Fig. 27 

 

Random forest uses a technique called bagging to build full decision trees in parallel from 

random bootstrap samples of the data set. The final prediction is an average of all of the 

decision tree predictions. 

The term “gradient boosting” comes from the idea of “boosting” or improving a single weak 

model by combining it with a number of other weak models in order to generate a collectively 

strong model. Gradient boosting is an extension of boosting where the process of additively 

generating weak models is formalized as a gradient descent algorithm over an objective 

function. Gradient boosting sets targeted outcomes for the next model in an effort to minimize 

errors. Targeted outcomes for each case are based on the gradient of the error (hence the name 

gradient boosting) with respect to the prediction. 

 

Regularization and hyperparameter tuning: 

The parameter chosen was max_depth which is the Maximum depth in the tree search during 

the optimization of weights. Increasing this value might make the model more complex and 

more likely to overfit. This time I chose a different parameter to see how the model behaves.  

It was tuned for various values to optimize the output, as shown in further sections. 

After tuning for max_depth, I took the best output (hopefully avoiding overfit) and then tuned 

for alpha. 

Parameters tuned: 

1) Regularised alpha – l2 norm regularization 

2) Max depth - Maximum depth of a tree. Increasing this value will make the model more 

complex and more likely to overfit. 0 indicates no limit on depth. Beware that XGBoost 

aggressively consumes memory when training a deep tree 

3) Tree method - Faster histogram optimized approximate greedy algorithm. GPU 

implementation of hist algorithm (gpu_hist) 

Velocity Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

o Max_depth 

https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/


 

 

Fig. 28 

In-sample R2 score = 0.962827 (one likely not overfitting) 

Validation R2 score = 0.92244 

Out-sample R2 score = 0.88950 

 

 

 

 

 

o Lambda with max_depth = 9 

 

 

Fig. 29 

 

Best performance is with lambda = 9 

 

In-sample R2 score = 0.9840 

Validation R2 score = 0.9551 

Out-sample R2 score = 0.8784 



 

 

 

• MSE variation with hyperparameter 

o Max_depth 

 

Fig. 30 

In-sample MSE = 0.00199 

Validation MSE = 0.0063 

Out-sample MSE = 0.01331 

 

o Lambda with max_depth = 9 

 
Fig. 31 

 

In-sample MSE = 0.0018 

Validation MSE = 0.0053 

Out-sample MSE = 0.0146 

 

Note: In sample and validation error decreased but out-sample increased by a bit at lambda = 9  

 

 

 

 



 

• Learning and validation curve for velocity: 

 
Fig. 32 

Omega Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 

o Max_depth 

 
Fig. 33 

 

In-sample R2 score = 0.8807 

Validation R2 score = 0.69446 

Out-sample R2 score = 0.3016 

 



 

o Lambda with max_depth = 9 

 
Fig. 34 

 

The score came out best with lambda = 2 

In-sample R2 score = 0.9237 

Validation R2 score = 0.7605 

Out-sample R2 score = 0.31185 

 

 

• MSE variation with hyperparameter 

o Max_depth 

 

 
Fig. 35 

 

In-sample MSE = 0.007678 

Validation MSE = 0.019899 

Out-sample MSE = 0.04383 

 

o Alpha tuning with max_depth = 8 



 

 

 

Fig. 36 

 

In-sample MSE = 0.0049 

Validation MSE = 0.01559 

Out-sample MSE = 0.04319 

 

 

Note: All the errors decreased at lambda = 2  

 

• Learning and validation curve for Omega: 

 

 
Fig. 37 



 

After increasing data points: 

In-sample R2 score = 0.8807 

Validation R2 score = 0.69446 

Out-sample R2 score = 0.3016 

 

Note: The linear model deprecated in favor of squared error due to large noise in data set 

 

 

 

 

 

 

 

Model 4: NEURAL NETWORK 

 
Multi-layer Perceptron (MLP) (Source: scikit-learn.org) is a supervised learning algorithm 

that learns a function by training on a dataset, where m is the number of dimensions for input 

and o is the number of dimensions for output. It is different from logistic regression, in that 

between the input and the output layer, there can be one or more non-linear layers, called hidden 

layers. The figure below shows a hidden layer. 

 

 
Fig. 38: Multilayer perceptron model 

 

The reason I chose this? 

1) Availability of large data set 

2) It can be used to solve complex nonlinear problems. 

3) Makes quick predictions after training. 

4) The same accuracy ratio can be achieved even with smaller samples. 

Also, I wanted to explore a Neural Network model. I used (10,2) as the size of hidden layer. 

 

Velocity Prediction: 

Parameter Tuning for R2 score and MSE: 



 

• R2 Score variation with hyperparameter 

 

Fig. 39 

 

In-sample R2 score = 0.610 

Validation R2 score = 0.615 

Out-sample R2 score = 0.591 

 

• MSE variation with hyperparameter 

 
Fig. 40 

In-sample MSE = 0.04691647128188403 

Validation R2 score = 0.04699860370372856 



 

Out-sample R2 score = 0.019885021045387995 

 

• Learning and Validation Curve for velocity: 

 

Fig. 41 

 

 

Omega Prediction: 

Parameter Tuning for R2 score and MSE: 

• R2 Score variation with hyperparameter 



 

 

Fig. 42 

In-sample R2 score = 0.038 

Validation R2 score = 0.036 

Out-sample R2 score = 0.03 

 

• MSE variation with hyperparameter 

 
Fig. 43 

In-sample MSE = 0.06203 

Validation MSE = 0.06289 

Out-sample MSE = 0.0695 

 

 

 

 

• Learning and Validation Curve Omega 



 

 

Fig. 44 

 

 

Delivered Model: 

With all the analysis shown above, the model I would like to deliver is XG Boost the reason 

is its fast speed and accuracy. Though it seems like an overfit but to make sure I will again 

verify the learning pipeline with the corridor data in hand. 

 

 

 

 

 

 

 

 

 



 

Dataset 2 

Model test with corridor data: 

 

Model 1: Linear Ridge Regression: 

Velocity MSE:  

 

Fig. 45 

In-sample MSE = 0.058763 

Validation MSE = 0.05964 

Out-sample MSE = 0.06604 

 

Omega MSE: 

 

Fig. 46 



 

 

In-sample MSE = 0.04724216267807056 

Validation MSE = 0.05964313150902283 

Out-sample MSE = 0.0564443296827880 

 

 

Model 3: XG Boost 

Velocity Prediction MSE: 

 

Fig. 47 

In-sample MSE = 0. 00218 

Validation MSE = 0.00319 

Out-sample MSE = 0.0364 

 

Omega: 

 

 

Fig. 48 



 

In-sample MSE = 0. 0.005 

Validation MSE = 0.01 

Out-sample MSE = 0.035 

 

Model 4: MLP 

Velocity MSE: 

 

Fig. 49 

In-sample MSE = 0.036 

Validation MSE = 0.038 

Out-sample MSE = 0.042 

 

Omega: 

 

Fig. 50 



 

In-sample MSE = 0.0472 

Validation MSE = 0.0480 

Out-sample MSE = 0.0521 

 

 

HENCE, THE PERFORMANCE IS BEST WITH XGBOOST!! 


